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Abstract In order to learn video object segmentation

models, conventional methods require a large amount of

pixel-wise ground truth annotations. However, collect-

ing such supervised data is time-consuming and labor-

intensive. In this paper, we exploit existing annotations

in source images and transfer such visual information

to segment videos with unseen object categories. With-

out using any annotations in the target video, we pro-

pose a method to jointly mine useful segments and learn

feature representations that better adapt to the target

frames. The entire process is decomposed into three

tasks: 1) refining the responses with fully-connected

CRFs, 2) solving a submodular function for selecting

object-like segments, and 3) learning a CNN model

with a transferable module for adapting seen categories

in the source domain to the unseen target video. We

present an iterative update scheme between three tasks

to self-learn the final solution for object segmentation.

Experimental results on numerous benchmark datasets

demonstrate that the proposed method performs favor-

ably against the state-of-the-art algorithms.
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1 Introduction

Nowadays, video data can be easily accessed and hence

visual analytics has become an important task in com-

puter vision. In this line of research, video object seg-

mentation is one of the effective ways to understand

visual contents and can facilitate various applications,

such as video editing, content retrieval, and object iden-

tification. While conventional methods rely on the su-

pervised learning strategy to effectively localize and

segment objects in videos, collecting such ground truth

annotations is expensive and cannot scale well to a large

number of object categories in videos.

Recently, weakly-supervised methods for video ob-

ject segmentation (Tsai et al. 2016b; Zhang et al. 2017;

Saleh et al. 2017; Yan et al. 2017) have been devel-

oped to relax the need for annotations where only class-

level labels are required. These approaches have sig-

nificantly reduced the labor-intensive step of collecting

pixel-wise annotated training data on target categories.

However, these target categories are pre-defined. Thus,

the trained model cannot be directly applied to videos

with unseen categories, i.e., object categories that are

not covered by training data. Annotating additional

categories during the phase of testing would require

more efforts and is less practical. In this paper, we pro-

pose an algorithm to reduce efforts in annotating both

pixel-level and class-level ground truths, in order to seg-

ment objects of unseen categories in videos.

To this end, we make use of existing pixel-level an-

notations in images from the PASCAL VOC dataset

(Everingham et al. 2010) with pre-defined categories,
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and design a framework that transfers this knowledge

to videos with unseen object categories. That is, the

proposed method is able to learn useful representations

for segmentation from the data in the image domain

and adapt these representations to segment objects in

videos regardless of whether the object categories are

covered by the PASCAL VOC dataset. Thus, while per-

forming video object segmentation, our algorithm does

not require annotations in any forms, such as pixel-level

or class-level ground truths.

We formulate the video object segmentation prob-

lem for unseen categories as a joint objective of refining

and mining useful segments from videos while learn-

ing transferable knowledge from image representations.

Since annotations are not provided in videos in our set-

ting, one can rely on the response output from a convo-

lutional neural network (CNN) to segment the object.

However, these responses are often over-smoothed due

to multiple max-pooling and down-sampling processes.

Thus, the responses need refinement in order to recover

the high-resolution details for better object localization

and segmentation. To this end, we first refine the re-

sponses using fully-connected conditional random fields

(CRFs) (Krähenbühl and Koltun 2011). Second, we de-

sign an energy function to discover object-like segments

from the refined responses in videos based on the fea-

ture representations learned from the image data. We

then utilize these discovered segments to update feature

representations in the CNN model, while a transferable

module is developed to learn the relationships between

multiple seen categories in images and the unseen cat-

egory in a video. By jointly considering both energy

functions for refining and mining better segments while

learning transferable representations, we develop an it-

erative optimization method to self-guided video object

segmentation. We also note that the proposed frame-

work is flexible as we can input either weakly-labeled

or unlabeled videos.

To validate the proposed method, we conduct ex-

periments on benchmark datasets for video object seg-

mentation. First, we evaluate our method on the DAVIS

2016 dataset (Perazzi et al. 2016) where some object

categories are not covered by the PASCAL VOC dataset.

Based on this setting, we compare our method with

the state-of-the-art methods for object segmentation

via transfer learning, including those using the NLP-

based GloVe embedding (Pennington et al. 2014) and

a decoupled network (Hong et al. 2016). In addition,

we demonstrate the effectiveness of the proposed it-

erative self-learning strategy by comparing the results

with and without using this strategy. Second, we adopt

the weakly-supervised setting on the YouTube-Objects

dataset (Prest et al. 2012) and show that the proposed

method performs favorably against the state-of-the-art

algorithms in both visual quality and accuracy. Third,

we further evaluate the proposed algorithm on unseen

object segmentation, and apply it to the SegTrack v2

dataset (Li et al. 2013), which contains numerous ob-

ject categories that do not appear in the PASCAL VOC

dataset.

The contributions of this work are summarized as

follows. First, we propose a framework for object seg-

mentation in unlabeled videos through a self-guided

learning method. Second, we develop a joint formula-

tion to refine and mine useful segments while adapting

the feature representations to the target videos. Third,

we design a CNN module that can transfer knowledge

from multiple seen categories in images to an arbitrary,

i.e., either seen or unseen, object category in a video.

We note that this paper is an extension of our pre-

vious work (Chen et al. 2018b), which is referred to

as VOSTRa. We make additional contributions in our

method for video object segmentation via transferable

representations (VOSTR). First, we leverage the fully-

connected CRFs to refine the responses and obtain pro-

posals of higher quality, which help the CNN model

learn better feature representations. Second, we inte-

grate this refinement process into the original objec-

tive, in which a joint formulation is proposed and is

optimized. Third, we provide comprehensive experi-

mental results and analysis on one additional dataset,

i.e., SegTrack v2, to demonstrate the effectiveness of

the proposed method.

2 Related Work

Video Object Segmentation. Video object segmen-

tation aims to separate foreground objects from the

background. Conventional methods utilize object pro-

posals (Lee et al. 2011; Perazzi et al. 2015; Koh and Kim

2017) or graphical models (Tsai et al. 2016a; Märki et al.

2016), while recent approaches focus on learning CNN

models from image sequences with frame-by-frame pixel-

level ground truth annotations to achieve the state-of-

the-art performance (Cheng et al. 2017; Tokmakov et al.

2017b; Jain et al. 2017). For CNN-based methods, mo-

tion cues (Li et al. 2018) are usually used to effec-

tively localize objects. Jain et al. (2017) utilize a two-

stream network by jointly considering appearance and

motion information. The SegFlow method (Cheng et al.

2017) further shows that jointly learning segmentation

and optical flow in videos enhances both performance.

Note that, these approaches usually require pre-training

on videos with frame-by-frame pixel-level annotations

(Cheng et al. 2017; Tokmakov et al. 2017b) or bound-
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Fig. 1 Overview of the proposed framework. Given a set of source images Is with semantic segmentation annotations Ys, we
first train a source CNN model Gs. To predict object segmentation on a target video It without knowing any annotations, we
initialize the target network Gt from the parameters in Gs and perform adaptation via a transferable layer T . A three-step
self-learning scheme is performed. We minimize the function Er to generate refined proposals P from responses R, optimize
the function Es for selecting object-like segments A from proposals P, and adapt feature representations in the CNN model
via optimizing Ef . The entire self-learning process is performed via iteratively updating the three energy functions to obtain
the final segmentation results.

ing box ground truths (Jain et al. 2017) to obtain better

foreground segmentation.

Another line of research is to fine-tune the model

based on the object mask in the first frame (Caelles et al.

2017; Khoreva et al. 2017) and significantly improves

the segmentation quality. More recently, Cheng et al.

(2018) adopt a part-based tracking method to deal with

challenging factors such as deformation and occlusion.

Oh et al. (2018) propose a siamese network to take

advantage of mask propagation and object detection.

Other methods such as pixel-wise metric learning (Chen

et al. 2018a) or network modulation (Yang et al. 2018)

are proposed to facilitate the segmentation runtime per-

formance. In contrast to using the annotation from the

first frame, the proposed algorithm uses only a smaller

number of existing annotations from the image dataset

and transfers the feature representations to unlabeled

videos for object segmentation. In addition, our method

is flexible for the weakly-supervised learning setting,

which cannot be achieved by the above approaches.

Weakly-supervised Video Object Segmentation.

To reduce the need of pixel-level annotations, weakly-

supervised methods (Shi et al. 2017) have been devel-

oped to facilitate the segmentation process, where only

class-level labels are required in videos. Numerous ap-

proaches are proposed to collect useful semantic seg-

ments by training segment-based classifiers (Tang et al.

2013) or ranking supervoxels (Zhong et al. 2016). How-

ever, these methods rely on the quality of the gener-

ated segment proposals and may produce inaccurate

results when taking low-quality segments as the input.

Zhang et al. (2015b) propose to utilize object detectors

together with object proposals to refine segmentation

results in videos. Furthermore, Tsai et al. (2016b) de-

velop a co-segmentation framework by linking object

tracklets from all the videos and improve the result. Re-

cently, the SPFTN method (Zhang et al. 2017) utilizes

a self-paced learning scheme to fine-tune segmentation

results from object proposals. Different from the above

algorithms that only target on a pre-defined set of cat-

egories, our approach further extends this setting to

segmenting unlabeled videos where unseen object cate-

gories are present.

Domain Adaptation and Transfer Learning. Us-

ing cross-domain data for unsupervised learning has

been explored in domain adaptation (Saenko et al. 2010;

Gopalan et al. 2011; Patricia and Caputo 2014; Ganin

and Lempitsky 2015; Luo et al. 2017; Tsai et al. 2018).

While domain adaptation methods make the assump-

tion that the same categories are shared across dif-

ferent domains, transfer learning approaches focus on

transferring knowledge between categories. Numerous

transfer learning methods have been developed for ob-

ject classification (Tommasi et al. 2014) and detection

(Lim et al. 2011; Hoffman et al. 2014). Similar efforts

have been made for object segmentation. Hong et al.

(2016) propose a weakly-supervised semantic segmenta-

tion method by exploiting pixel-level annotations from

different categories. Recently, Hu et al. (2018) design

a weighted transform function to transfer knowledge

between the detected bounding boxes and instance seg-

ments. In this work, we share the similar motivation
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with Hong et al. (2016) but remove the assumption of

weak supervisions. Luo et al. (2017) tackle the prob-

lem of domain adaptation for image classification with

few annotations available in the target domain. On the

contrary, we tackle the video object segmentation task,

where there are no available labels provided in the tar-

get video. To the best of our knowledge, except for our

conference version (Chen et al. 2018b), this work is the

first attempt for video object segmentation by transfer-

ring knowledge from annotated images to an unlabeled

video of an unseen category.

3 Algorithmic Overview

This section describes an overview of the proposed frame-

work and the developed objective function.

3.1 Overview of the Proposed Framework

We first describe the problem context of this work.

Given a number of source images Is = {I1s , ..., INs }
with pixel-level semantic segmentation annotations Ys
= {y1s , ..., yNs } and the target sequence It = {I1t , ..., IMt }
without any labels, our objective is to develop a self-

guided learning algorithm that segments the object in

It by transferring knowledge from Is to It. In this work,

the object category in It is allowed to be arbitrary. It

can be either covered by or different from those in Is.
Fig. 1 illustrates the proposed framework for seg-

menting the object in video It. First, we train a source

CNN model Gs using Is and Ys as the input and the

desired output, respectively. Second, we initialize the

target network Gt from the parameters in Gs. Since Is
and It may not share common object categories, we de-

sign a transferable layer T that enables cross-category

knowledge transfer, and append it to the target net-

work. The initialization of the transferable layer T will

be discussed later. With the input video It of an unseen

object category, we aim at adapting the target network

Gt so that the object in It can be better segmented.

To this end, we present a self-learning procedure

with three key components, namely 1) a fully-connected

CRF model for refining responses, 2) a ranking module

for mining segment proposals, and 3) a CNN model for

learning the transferable feature representations. The

three components work sequentially and iteratively to

discover the object in It. After the target network Gt
is applied to the input video It to generate response

outputs, we first use fully-connected CRFs to refine the

responses R produced by Gt, and compile a set of seg-

ment proposals P on the target video It. Second, to

select a set of more object-like proposals A among P,

Table 1 Notations in the proposed algorithm.

Notation Representative

Gs Source network
Gt Target network
T Transferable layer
C Fully-connected CRFs
Is Source images
It Target sequence
Ys Semantic segmentation annotations of Is
R Responses produced by Gt

P Proposals generated from R
A Segments selected from P
Er Energy for refining R
Es Energy for selecting A from P
Ef Energy for optimizing Gt

θ Parameters of Gt

we develop an energy function to re-rank these propos-

als based on their objectness scores and mutual rela-

tionships. Third, by treating the selected proposals A
as the pseudo ground truth, we update the transferable

feature representations to better segment the object in

the video. The entire process can be formulated as a

joint and iterative optimization problem with the ob-

jective function described in the following.

3.2 Objective Function

Our goal is to find high-quality segment proposals P
from the target video It that can guide the network to

learn feature representations F for better segmenting

the given video It. We carry out this task by jointly

optimizing an energy function E that accounts for seg-

ment proposals P and features F :

max
A,θ

E(It,P,F ;A, θ) = max
A,θ

Er(It,R;P) + Es(P,F ;A)

+ Ef (It,A; θ), (1)

where Er is the energy for refining the responses R
yielded by the CNN model Gt via using fully-connected

CRFs, Es is the energy for selecting a set of high-quality

segments A from the proposals P based on the features

F , and θ is the parameters of the CNN model that aims

to optimize Ef and learn the feature representations F
from the selected proposals A. After the optimization

process, we obtain the final segmentation results, which

is the network output P. Note that, here we do not in-

clude the responses R as the input in E, since R is a

intermediate product of the optimization process. We

summarize the notations in the proposed algorithm in

Table 1. Details of each energy function and the opti-

mization process are described in the following section.
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4 Transferring Knowledge for Segmentation

In this section, we describe the proposed energy func-

tions for refining responses, mining segments, and learn-

ing the transferable feature representations, respectively.

Response refining is carried out by using fully-connected

CRFs, segment mining is formulated as a submodular

optimization problem, and transferable feature learning

is accomplished through a CNN model with a trans-

ferable module. After introducing the energy functions

for the three tasks, we present an iterative optimization

scheme to jointly optimize the objective in (1).

4.1 Refining Responses

Given a target video It, we can perform frame-by-frame

object segmentation by using the CNN model Gt with

the proposed transferable layer T . However, the deep

CNN model Gt with multiple max-pooling and down-

sampling layers typically yields over-smoothed responses

for segmentation. To refine its quality for localization

and segmentation, we apply fully-connected CRFs to

the responses produced by the CNN model, so that the

high-resolution details for segmentation can be recov-

ered, which can in turn help the other components.

Refinement with Fully-connected CRFs. To re-

cover the detailed local structure, we utilize an energy

function based on the fully-connected CRFs:

Er(It,R;P) = −
∑
i

δi(xi)−
∑
ij

δij(xi, xj), (2)

where δi(xi) = − log r(xi) is the unary potential, and

r(xi) is the label assignment probability at pixel i, which

is predicted by the CNN model, i.e., obtained from R.

δij(xi, xj) is the pairwise potential for a pixel pair (i,

j), which is formulated as:

δij(xi, xj)

= µ(xi, xj)

[
w1 exp

(
−‖pi − pj‖

2

2σ2
α

− ‖Ii − Ij‖
2

2σ2
β

)

+ w2 exp

(
−‖pi − pj‖

2

2σ2
γ

)]
, (3)

where µ(xi, xj) = 1 if yi 6= yj , and zero otherwise,

which means that only pixels with distinct labels y are

penalized. The remaining function contains two Gaus-

sian kernels in different feature spaces. The first kernel

forces pixels in neighboring positions (denoted as p)

and with similar RGB colors (denoted as I) to have

the same label, while the second kernel only considers

pixel positions. The constants σα, σβ , and σγ are hyper

parameters introduced to control the scales of the Gaus-

sian kernels. The constants w1 and w2 are the weights

of the two Gaussian kernels.

4.2 Mining Segment Proposals

After refining the responses of the segmentation re-

sult, there is still another defect about the generated

segments due to the unsupervised nature of this task.

Namely, some generated segments do not well cover

objects. Thus, we aim to select high-quality segments

and eliminate noisy ones from the generated object seg-

ments. The major challenge of this task lies in the lack

of ground truth annotations in the target video, and

thus we cannot train a classifier to guide the selection

process.

Inspired by the co-segmentation method (Tsai et al.

2016b), we observe that high-quality segments typically

have higher mutual relationships. As a result, we gather

all the predicted segments from the target video and

construct a graph to link each segment. We then for-

mulate segment mining as a submodular optimization

problem, aiming to select a subset of more object-like

segments that share higher similarities.

Graph Construction on Segments. We first feed

the target video It into the CNN model frame-by-frame

and obtain a set of segment proposals P, where each

proposal is a connected-component in the predicted seg-

mentation of the video It. Then we construct a fully-

connected graph G = (V, E) on the set P, where each

vertex v ∈ V is a segment, and each edge e ∈ E models

the pairwise relationship between two segments. Our

goal is to find a subset A of P that contains proposals

with higher object-like confidence.

Submodular Function. Since there is no ground truth

available, we design a submodular function for min-

ing the segments belonging to the object by leverag-

ing the following three properties: 1) the selected seg-

ments should be similar to each other since they be-

long to the same object; 2) the selected segments have

higher responses in the output of the CNN model; and

3) the selected segments usually move differently from

the background area in the video.

We formulate the submodular function for select-

ing object-like segments by a facility location term H
(Lazic et al. 2009) and a unary term U . The former

enhances the similarity between the selected segments,

while the latter encourages the high probability of each

selected segment being a true object. Both terms are de-

fined based on the segment proposals P and the adopted

feature representation F .
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Specifically, we define the facility location term as

H(P,F ;A) =
∑
i∈A

∑
j∈V

W (vi, vj)−
∑
i∈A

φi, (4)

where W denotes the pairwise relationship between a

potential facility vi and a vertex vj , while φi is the cost

to open a facility, which is fixed to a constant α. We

define W as the similarity between two segments in or-

der to encourage the submodular function to choose a

facility vi that is similar to vj . To estimate this sim-

ilarity, we represent each segment as a feature vector

and compute the inner product of the two vectors. To

form the feature vector for each segment, we draw fea-

ture maps from the CNN model (conv1 to conv5) and

perform the global average pooling on each segment. It

is the adopted feature representation F in this work.

In addition to the facility location term, we employ

a unary term to evaluate the quality of segments

U(P,F ;A) = λo
∑
i∈A

Φo(i) + λm
∑
i∈A

Φm(i), (5)

where Φo(i) is the objectness score that measures the

probability of segment i belonging to the region of the

object, and Φm(i) is the motion score that estimates

the motion difference between segment i and the back-

ground region. λo and λm are the weights for the two

terms, respectively. The objectness score Φo(i) is calcu-

lated by averaging the probability map of the CNN out-

put layer on all the pixels within the segment. For the

motion score Φm(i), we first compute the optical flow

(Liu et al. 2009) for two consecutive frames, and then

we utilize the minimum barrier distance (Strand et al.

2013; Zhang et al. 2015a) to convert the optical flow

into a saliency map, where larger distances represent

larger motion difference with respect to the background

region.

Formulation for Segment Mining. Our goal is to

find a subset A of P containing segments that are simi-

lar to each other and have higher object-like confidence.

Therefore, we combine the facility location term H and

the unary term U to yield the energy Es in (1) as:

Es(P,F ;A) = H(P,F ;A) + U(P,F ;A). (6)

We also note that the linear combination of two non-

negative terms preserves the submodularity (Zhu et al.

2014).

Discussions. In this work, we are more interested in

video segmentation than image segmentation as pixel-

level annotations in videos are more difficult to obtain,

especially when there are unseen objects in videos. To

this end, we take advantages of continuous frames in the

video, in which nearby frames share high similarities in

appearance, whereas separate images would not have

this property. This provides us with a useful cue to

perform segment mining in videos via constructing the

submodular objective. Although the general objective

and pipeline introduced in this work are also applicable

to image segmentation, it would require other ways to

effectively mine useful segments, which is outside the

scope of this paper.

4.3 Learning Transferable Feature Representations

Given the selected set of object-like segment proposals,

the ensuing task is to learn better feature representa-

tions based on these segments. To this end, we propose

to use a CNN model fine-tuned on these segments via

a self-learning scheme. Since our target video may have

a different set of object categories from those in the

source domain, we further develop a transfer learning

method where a transferable layer is augmented to the

CNN model. With the proposed layer, our network is

able to transfer knowledge from seen categories to the

unseen category, without the need of any supervision in

the target video.

Inspired by the observation that an unseen object

category can be represented by a series of seen objects

(Rochan and Wang 2015), we develop a transferable

layer that approximates an unseen category as a linear

combination of seen ones in terms of the output feature

maps. In the following, we first present our CNN objec-

tive for learning the feature representations based on

the selected segment proposals. Then we introduce the

details of the proposed layer for transferring knowledge

from the source domain to the target one.

Objective Function. Given the target video It and

the selected segment proposals A as described in Sec-

tion 4.2, we use A as our pseudo ground truths and

optimize the target network Gt with parameters θg to

obtain better feature representations that match the

target video. Specifically, we define the energy function

Ef in (1) as:

Ef (It,A; θg, θT ) = −L(T (Gt(It)),A), (7)

where θT is the parameters of the transferable layer

T and L is the cross-entropy function to measure the

loss between the network prediction T (Gt(It)) and the

pseudo ground truth A. Note that we use the minus

sign for the loss function L to match the maximization

formulation in (1).

Learning Transferable Knowledge. Suppose there

are Cs categories in the source domain, we aim to trans-

fer a source network Gs pre-trained on the source im-

ages Is to the target video. To achieve this, we first
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initialize the target network Gt using the parameters in

Gs. Given the target video It, we can generate frame-

wise feature maps R = Gt(It) = {rc}Cs
c=1 through the

network with Cs channels, where rc is the output map

of source category c. Since the target category is un-

known, we then approximate the desired output map,

r, for the unseen category as a linear combination of

these seen categories through the proposed transferable

layer T :

r = T (R) =

Cs∑
c=1

wc rc, (8)

where wc is the weight of the seen category c. Specif-

ically, the proposed transferable layer T can be per-

formed via a 1×1 convolutional layer with Cs channels,

in which the parameter of channel c in θT corresponds

to wc.

Since wc is not supervised by any annotations from

the target video, the initialization of wc is critical for

obtaining a better combination of feature maps from

the seen categories. Thus, we initialize wc by calculat-

ing the similarity between each source category c and

the target video. For each image in the source and tar-

get domains, we extract its feature maps from the fc7

layer of the network and compute a 4096-dimensional

feature vector on the predicted segment via global av-

erage pooling. By representing each image as a feature

vector, we measure the similarity score between source

and target images by their inner product. Finally, the

initialized weight winitc for the category c can be ob-

tained by averaging largest scores on each target frame

with respect to the source images:

winitc =
1

|It|

|It|∑
i=1

max
j
〈F it ,F js,c〉, (9)

where |It| is the number of frames in the target video,

F it ∈ R4096 is the feature vector of the ith frame of It,
and F js,c ∈ R4096 is the feature vector of the jth image

of source category c.

Discussions. In the proposed method, we do not make

any assumption about the number of segments in each

frame during learning a set of weights for linear com-

bination in (8). Thus, our method can predict multi-

ple “instances” (e.g., Fig. 6) of one object category, in

which these segments share the same weights for lin-

ear combination and tend to be similar to each other.

However, the current method may not predict multiple

“objects” with diverse appearance, unless we introduce

other sets of linear combinations.

4.4 Joint Formulation and Model Training

Based on the formulations for response refinement in

(2), segment mining in (6), and transferable feature rep-

resentation learning in (7), we jointly solve the three

objectives, i.e., Er, Es, and Ef in (1), via

max
A,θ

E(It,P,F ;A, θ)

=max
A,θ

Er(It,R;P) + Es(P,F ;A) + Ef (It,A; θ)

= max
A,θg,θT

−
∑
i

δi(xi)−
∑
ij

δij(xi, xj)

+ [H(P,F ;A) + U(P,F ;A)]− L(T (Gt(It)),A).

(10)

We decompose the optimization of (10) into three sub-

problems: 1) utilizing fully-connected CRFs for response

refinement to yield the proposal set P, 2) solving the

submodular function for segment mining to generate

pseudo ground truthA, and 3) updating the CNN model

θg and θT for transferable feature representation learn-

ing. We adopt an iterative procedure to alternately op-

timize the three sub-problems. The initialization strat-

egy and the optimization of the three sub-problems are

described below.

Initialization. We first pre-train the source network

Gs on the PASCAL VOC training set (Everingham et al.

2010) containing 20 object categories. We then initial-

ize the target network Gt from parameters in Gs and

the transferable layer T as described in Section 4.3. To

obtain an initial set of segment proposals, we forward

the target video It to the target model Gt with T and

generate responses R.

Optimizing Er by Fixing Es and Ef . To refine

the responses produced by the CNN which are over-

smoothed due to the max-pooling and downsampling in

the CNN model, we optimize Er following Krähenbühl

and Koltun (2011) to provide higher quality proposals,

in which we denote this process as C. Note that, here we

fix the parameters of CRFs and infer refined proposals

that provide the minimum of energy function −Er.

Optimizing Es by Fixing Er, Ef . After generating

the refined proposals P, we fix the network parameters

and optimize A via Es in (10). We adopt a greedy al-

gorithm similar to Tsai et al. (2016b). Starting from an

empty set of A, we add an initial element a ∈ V\A to A
that gives the largest energy gain. The process is then

repeated and stops when one of the following conditions

is satisfied: 1) the number of selected proposals reaches

a threshold, i.e., |A| > NA, and 2) the ratio of the

energy gain between two rounds is below a threshold,

i.e., D(Ai) < β · D(Ai−1), where D(Ai) stands for the
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Fig. 2 Sample results of iteratively optimizing Er, Es, and Ef . Starting from the initial responseR, we generate the proposals P
via Er. Then we solve Es to obtain object-like segments A as our pseudo ground truth to optimize Ef . By iteratively optimizing
the three energy functions, our algorithm gradually improves the quality of R, P and A to obtain the final segmentation results.

Algorithm 1 Unseen Object Segmentation
Source Image: Is, Ys
Target Video: It
Initialization: pre-trained Gs on source inputs, Gt ← Gs,
winit

c via (9)
(R,F)← T (Gt(It))
P ← C(It,R) via (2)
while P not converged do

A0 ← ∅, i← 1
loop

a∗ = arg max
{Ai∈V}

Es(P,F ;Ai), where Ai ← Ai−1 ∪ a,

a ∈ V\A
if |A| > NA or D(Ai) < β · D(Ai−1) when i ≥ 2 then

break
end if
Ai ← Ai−1 ∪ a∗, i← i+ 1

end loop
A ← Ai

Optimize Ef : (θg , θT )← min L(T (Gt(It)),A)
(R,F)← T (Gt(It))
P ← C(It,R) via (2)

end while

Output: object segmentation P of It

energy gain, i.e., difference of Es between two rounds

during the optimization process, and β is the ratio.

Optimizing Ef by Fixing Er and Es. Once obtain-

ing A as the pseudo ground truths, we fix A and opti-

mize the network with the transferable layer, i.e., θg and

θT , in Ef of (10). We alter the problem to a task that

minimizes the network loss L in an end-to-end fashion,

jointly for θg and θT using the SGD method.

Iterative Optimization. To obtain the final A, θg,

and θT , instead of directly solving (10), we solve it via

an iterative updating scheme among Er, Es, and Ef
until convergence. To determine the convergence, we

set the conditions: 1) The IoU of segmentation between

two iterations is larger than 90%. Namely, segmentation

almost retains the same one. 2) The maximum number

of iterations is 3. Empirically, we find that our method

on most sequences converges in three iterations.

Our algorithm contains three components: proposal

mining via submodular optimization, proposal refine-

ment via CRFs, and pseudo ground truth training via

CNNs. The first and third steps are sub-optimal, while

the second step has an optimal solution. Therefore, the

energy of each term could be optimized individually

during the iterative optimization process. Fig. 2 shows

an example of gradually updating R, P and A via it-

eratively optimizing Er, Es, and Ef . The overall opti-

mization process is summarized in Algorithm 1.

Discussions. Different from previous methods that use

the fully-connected CRFs as post-processing to improve

the final results, our method adopts the fully-connected

CRFs as one component during the training stage. That

is, the energy function in CRFs receives the response

from proposals to generate refined ones, which in turn

serve as better pseudo ground truth to help the CNN

model learn better transferable feature representations.

In addition, we integrate this energy function into the fi-

nal objective and perform iterative updating to achieve

final results.
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Table 2 Training and testing time of our method on the
DAVIS dataset.

Stage Time (second)

Motion prior computing (per frame pair) 0.01
Feature extraction (per frame) 1.72

Response refining via (2) (per frame) 0.78
Segment mining via (6) (per frame) 0.01

CNN model training via (7) (per frame) 7.31

Inference (per frame) 0.01

5 Experimental Results

In this section, we first present implementation details

of the proposed method, and then we show experimen-

tal results on numerous benchmark datasets. In addi-

tion, ablation studies for evaluating the effects of the

proposed components in the algorithm are conducted.

The source code and trained models will be made avail-

able to the public.

5.1 Implementation Details

In the submodular function for segment mining, we set

λo = 20 and λm = 35 for the unary term in (5). Dur-

ing the submodular optimization in (6), we use NA =

0.8 · |P| and β = 0.8. All the parameters are fixed in all

the experiments. For training the CNN model in (7),

we employ two types of fully convolutional networks

(FCNs) (Long et al. 2015) including the VGG-16 (Si-

monyan and Zisserman 2014) and ResNet-101 (He et al.

2016) architectures for both the source and target net-

works using the Caffe library. The learning rate, mo-

mentum, and batch size are set as 10−14, 0.99, and 1,

respectively. To further refine the final segmentation re-

sults, we apply additional CRFs to the responses pro-

duced by our fully-trained CNN model.

5.2 Training Time and Runtime Analysis

The training and testing (inference) time of each com-

ponent of our method is shown in Table 2. In the pro-

posed method, we pre-train the source network on the

image dataset and use its parameters to initialize the

target network. For each new video, we train the tar-

get network via the proposed iterative optimization in

Algorithm 1 so that the target network can be applied

to segment the unseen object in the testing video. The

first five rows of runtime in Table 2 are for training on

the new video, while the inference time is for applying

the trained model to each frame of the video.

All the timings are measured on a machine with

an Intel Xeon 2.5GHz processor and an NVIDIA GTX

Table 3 IoU of the selected segments with different weights
of the motion term on the DAVIS dataset.

λm 0 5 15 25 35 45

Avg. IoU 57.2 57.4 60.5 60.6 61.0 60.3

Table 4 IoU of the selected segments with and without CRFs
on the DAVIS dataset.

w/o CRFs w/ CRFs

Avg. IoU 61.0 63.5

Table 5 IoU of the final results with different learning rates
on the DAVIS dataset.

lr 10−15 10−14 10−13

Avg. IoU 67.9 68.4 68.2

Table 6 IoU of the final results with different values of β on
the DAVIS dataset.

β 0.6 0.7 0.8 0.9

Avg. IoU 68.0 68.1 68.4 68.3

1080 Ti graphics card with 11GB memory. We com-

pute the optical flow (Liu 2009) and utilize the min-

imum barrier distance (Zhang et al. 2015a) to gener-

ate motion prior using MATLAB. In the proposed al-

gorithm,including feature extraction, response refining,

segment mining, and CNN model training are imple-

mented by using Python and the Caffe library on the

graphics card. The CNN model is fine-tuned for 2, 000

iterations. Note that we report the runtime averaged

over all the frames.

5.3 DAVIS Dataset

We first conduct experiments on the DAVIS 2016 bench-

mark dataset (Perazzi et al. 2016). Since our goal is to

transfer the knowledge from seen categories in images

to unseen objects in the video, we manually select all

the videos with object categories that are different from

the 20 categories in the PASCAL VOC dataset. In the

following, we first conduct ablation studies and exper-

iments to validate the proposed method. Second, we

show that our algorithm can be applied under various

settings on the entire set of the DAVIS 2016 dataset.

Impact of the Motion Terms. One critical compo-

nent of our framework is to mine useful segments for

the further CNN model training step. In the submodu-

lar function of (5), we incorporate a motion term that

accounts for object movements in the video. To validate

its effectiveness, we fix the weight λo = 20 for the ap-

pearance and vary the weight λm for the motion term.
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Table 7 Learned weights of the transferable layer on the DAVIS dataset for transferring knowledge from seen/source categories
(rows) to unseen/target object categories (columns). For each unseen category, the largest weight over all seen categories is
marked in bold.

Sequence bear bswan camel eleph goat malw rhino

aero 0.286 0.419 0.381 0.412 0.279 0.430 0.325

bike 0.317 0.372 0.393 0.423 0.358 0.309 0.432

bird 0.624 0.891 0.538 0.572 0.614 0.780 0.595

boat 0.392 0.419 0.358 0.460 0.323 0.474 0.428

bottle 0.401 0.336 0.307 0.410 0.349 0.387 0.368

bus 0.392 0.262 0.266 0.440 0.306 0.200 0.327

car 0.488 0.317 0.469 0.559 0.379 0.292 0.508

cat 0.756 0.436 0.417 0.574 0.609 0.398 0.492

chair 0.507 0.314 0.406 0.528 0.466 0.362 0.450

cow 0.701 0.409 0.715 0.748 0.618 0.346 0.846

table 0.341 0.310 0.186 0.301 0.291 0.504 0.257

dog 0.700 0.476 0.534 0.603 0.788 0.417 0.576

horse 0.547 0.330 0.898 0.770 0.692 0.260 0.776

mbike 0.301 0.287 0.346 0.408 0.371 0.287 0.355

person 0.504 0.429 0.731 0.639 0.554 0.366 0.629

plant 0.463 0.418 0.364 0.437 0.428 0.451 0.474

sheep 0.721 0.525 0.491 0.662 0.616 0.348 0.605

sofa 0.366 0.309 0.366 0.447 0.404 0.291 0.412

train 0.298 0.260 0.343 0.488 0.320 0.204 0.419

tv 0.369 0.252 0.277 0.425 0.271 0.248 0.303

In Table 3, we show the IoU of the selected segment pro-

posals via solving (6) under various values of λm. The

results show that the IoU is gradually improved when

increasing the motion weight, which indicates that the

quality of selected segments becomes better, and hence

we use λm = 35 in all the following experiments.

Impact of Response Refinement. In Table 4, we

present the IoU of the selected segment proposals with

and without using fully-connected CRFs. With the re-

finement by CRFs, the IoU of the selected segments is

improved by 2.5%. Therefore, the CNN model is able

to learn better feature representations.

Sensitivity to Learning Rate. We provide the fi-

nal results under different learning rates on the DAVIS

dataset in Table 5. We fix the initial learning rate as

10−14 according to the results. We use a small learn-

ing rate to account for the unnormalized loss computed

across spatial dimensions in our implementation. For

example, if we perform normalization on the loss, the

corresponding learning rate is around 10−8.

Sensitivity to β for Submodular Optimization. In

Table 6, we report the average IoU of the final results

using different values of β for submodular optimization

in (6). It can be observed that our method is robust to

the value of β. Based on the results in Table 6, we set

β to 0.8.

Analysis of Transferring Visual Information. We

analyze the proposed method for transferring visual in-

formation by investigating the weights of the transfer-

able layer. Table 7 presents the learned weights of the

transferable layer on the DAVIS dataset for unseen ob-

ject categories. For each target video, the source cat-

egories with higher weights are similar to the target

video in appearance, which gives reasonable transform

of visual information.

Ablation Study. In the middle group of Table 8, we

show the final segmentation results of our method us-

ing VGG-16 architecture with various baselines and set-

tings. We first present a baseline method that uses the

GloVe embeddings (Pennington et al. 2014) to initialize

weights, i.e., the similarity between two categories, of

the transferable layer. Since the GloVe is not learned

in the image domain between categories, the initialized

weights may not reflect the true relationships between

the seen and unseen categories, and hence the results

are worse than the proposed method for initializing the

transferable layer.

Furthermore, we show results at different stages, in-

cluding using the model with initialization before op-

timizing (10), after optimization, after response refine-

ment during training and the final result with CRF re-

finement as post-processing. After the optimization, the

IoU is improved in 5 out of 7 videos, which shows the

effectiveness of the proposed self-learning scheme with-

out using any annotations in the target video. In ad-

dition, compared to our conference version, VOSTRa,

using CRFs at training and inference stages improve
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Table 8 Results on the DAVIS 2016 dataset with categories excluded from the PASCAL VOC dataset.

Methods bear bswan camel eleph goat malw rhino Avg.

CVOS (Taylor et al. 2015) 86.4 42.2 85.0 49.4 7.4 24.5 52.0 49.6
MSG (Ochs and Brox 2011) 85.1 52.6 75.6 68.9 73.5 4.5 90.2 64.3

FST (Papazoglou and Ferrari 2013) 89.8 73.2 56.2 82.4 55.4 8.7 77.6 63.3
NLC (Faktor and Irani 2014) 90.7 87.5 76.8 51.8 1.0 76.1 68.2 64.6
LMP (Tokmakov et al. 2017a) 69.8 50.9 78.3 78.9 75.1 38.5 76.8 66.9

SPFTN (Zhang et al. 2017) 74.8 87.6 76.2 75.6 72.8 65.8 55.2 72.6

TransferNet (Hong et al. 2016) 73.7 83.4 65.5 76.1 78.1 17.9 42.4 62.4
VOSTRa (Chen et al. 2018b) (GloVe) 82.6 67.2 68.8 61.2 70.4 64.7 32.0 63.8

VOSTRa (Chen et al. 2018b) (init) 80.3 75.6 70.9 70.4 83.1 40.9 57.7 68.4
VOSTRa (Chen et al. 2018b) (final) 88.8 80.6 68.6 71.8 82.4 43.8 67.3 71.9

VOSTR (w/ response refinement at training) 90.1 84.2 72.3 70.6 82.7 72.4 66.5 77.0
VOSTR (final) 94.5 92.8 79.0 75.0 85.0 84.9 67.5 82.7

ARP (Koh and Kim 2017) 92.0 88.1 90.3 84.2 77.6 58.3 88.4 82.7
FSEG (Jain et al. 2017) 91.5 89.5 76.4 86.2 84.1 83.3 77.6 84.1

VOSTRa (Chen et al. 2018b) (ResNet) 91.8 90.3 77.5 85.7 84.8 84.9 86.0 85.9
VOSTR (ResNet) 93.3 92.7 80.7 87.7 85.4 88.2 88.2 88.0

the performance by 5.1% (from 71.9% to 77.0%) and

5.7% (from 77.0% to 82.7%), respectively. The results

indicate that the CRFs enhance our method when they

are used for post-processing as well as when they are

employed to help the CNN model learn better feature

representations.

Overall Comparisons. In Table 8, we show the com-

parisons between our method and the state-of-the-art

approaches. We first demonstrate the performance of

our method using VGG-16 architecture. The work clos-

est in the scope to the proposed framework is the Trans-

ferNet method (Hong et al. 2016) that transfers the

knowledge between two image domains with mutually

exclusive categories in a weakly-supervised setting. To

compare with this approach, we use the authors’ pub-

lic implementation and train the models with the same

setting as our method. We first show that VOSTRa

achieves better IoUs in 5 out of 7 videos and improves

the overall IoU by 9.5% on average. With the response

refinement step in our final model, the performance is

further improved by 20.3% in IoU. We also note that

our model with initialization already performs favor-

ably against Hong et al. (2016), which demonstrates

that the proposed transferable layer is effective in learn-

ing knowledge from seen categories to unseen ones.

In addition, we present more results of video object

segmentation methods in Table 8 and show that the

proposed algorithm achieves better performance. Dif-

ferent from existing approaches that rely on long-term

trajectory (Taylor et al. 2015; Ochs and Brox 2011) or

motion saliency (Papazoglou and Ferrari 2013; Faktor

and Irani 2014) to localize foreground objects, we use

the proposed self-learning framework to segment unseen

object categories via transfer learning. We note that the

proposed method performs better than the CNN-based

model (Tokmakov et al. 2017a) that utilizes synthetic

videos with pixel-wise segmentation annotations.

We further employ the stronger ResNet-101 archi-

tecture and compare with state-of-the-art unsupervised

video object segmentation methods. In the bottom group

of Table 8, we show that our approach performs better

than FSEG (Jain et al. 2017) using the same architec-

ture and training data from PASCAL VOC, i.e., the

setting of the appearance stream in FSEG (Jain et al.

2017). Since the motion stream in FSEG adopts addi-

tional training data form the ImageNet-Video dataset

(Russakovsky et al. 2015), it is not fair to compare our

method with the motion stream and the joint model in

FSEG. In addition, compared to ARP (Koh and Kim

2017) that adopts a non-learning based framework via

proposal post-processing and is specifically designed for

video object segmentation, our algorithm performs bet-

ter and is flexible under various settings such as using

weakly-supervised signals. Visual comparisons are pre-

sented in Fig. 3 and Fig. 4.

Results on the Entire DAVIS 2016 Dataset. In

addition to performing object segmentation on unseen

object categories, our method can adapt to the weakly-

supervised setting by simply initializing the weights in

the transferable layer as a one-hot vector, where only

the known category is set to 1 and the others are 0. We

evaluate this setting on the DAVIS 2016 dataset with

categories shared in the PASCAL VOC dataset. Note

that, we still adopt the unsupervised setting for the

unseen categories. The results of each video from the

DAVIS 2016 dataset are shown in Table 9. In compar-

ison with a recent weakly-supervised method SPFTN

(Zhang et al. 2017) and the baseline FCN (Long et al.
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Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Fig. 3 Sample results on the DAVIS dataset for unseen object categories. Our results contain less noisy segments and more
details than the approaches CVOS (Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou and Ferrari 2013),
TransferNet (Hong et al. 2016) and VOSTRa (Chen et al. 2018b).

2015) (our initial result), our approach addresses the

transfer learning problem and already outperforms their

methods without refining responses. By integrating the

fully-connected CRFs objective, we further improve the

performance by 8.9% and 8.5% with respect to SPFTN

and FCN, respectively.

Although the same categories are shared between

the source and target domains in this setting, we can

still assume that the object category is unknown in

the target video. Under this fully unsupervised setting

without using any pixel-wise annotations in videos dur-

ing training, we show that our method improves the

results of FSEG (Jain et al. 2017) and other unsuper-

vised algorithms (Ochs and Brox 2011; Papazoglou and

Ferrari 2013; Faktor and Irani 2014). Sample results

are presented in Fig. 5. In addition, we provide some
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Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Input CVOS MSG FST

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Fig. 4 Sample results on the DAVIS dataset for unseen object categories. Our results contain less noisy segments and more
details than the approaches CVOS (Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou and Ferrari 2013),
TransferNet (Hong et al. 2016) and VOSTRa (Chen et al. 2018b).

failure cases in Fig. 6 caused by the objective of our

method, which is to segment all the objects with the

same category in a video.

5.4 YouTube-Objects Dataset

We evaluate the proposed method on the YouTube-

Objects dataset (Prest et al. 2012) with annotations

provided by Jain and Grauman (2014) for 126 videos.

Since this dataset contains 10 object categories that

are shared with the PASCAL VOC dataset, we con-

duct experiments using the weakly-supervised setting.
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Table 9 Per-video results on the DAVIS 2016 dataset.

Weak Supervision No Supervision

Methods SPFTN FCN VOSTRa VOSTR MSG FST NLC FSEG VOSTRa VOSTR

(Zhang
et al. 2017)

(Long et al.
2015)

(Chen et al.
2018b)

(Ours)
(Ochs and
Brox 2011)

(Papazoglou
and Ferrari

2013)

(Faktor and
Irani 2014)

(Jain et al.
2017)

(Chen et al.
2018b)

(Ours)

bear 74.8 80.3 89.8 94.5 85.1 89.8 90.7 91.5 91.8 93.3

bswan 87.6 75.6 76.7 92.8 52.6 73.2 87.5 89.5 90.3 92.7

bumps 29.7 29.9 36.2 43.6 35.3 24.1 63.5 38.8 42.1 43.2

trees 35.0 29.2 40.5 24.6 18.8 18.0 21.2 34.7 38.9 39.1

boat 35.9 63.4 67.0 61.0 14.4 36.1 0.7 63.8 63.8 62.6

bdan 37.1 14.6 46.0 14.7 23.6 46.7 67.3 14.2 13.1 13.0

bdanF 70.0 51.4 80.0 49.7 15.7 61.6 80.4 54.9 62.7 68.0

bus 81.5 61.1 81.2 62.6 88.5 82.5 62.9 80.4 80.5 81.2

camel 76.2 70.9 72.0 79.0 75.6 56.2 76.8 76.4 77.5 80.7

carR 76.8 71.0 88.8 71.4 63.0 80.8 50.9 74.8 79.6 79.1

carS 78.1 87.1 92.5 91.0 88.0 69.8 64.5 88.4 93.3 94.0

carT 75.4 86.7 90.4 88.9 62.1 85.1 83.3 90.7 92.5 93.6

cows 77.0 85.7 88.1 90.5 79.9 79.1 88.3 88.0 88.3 90.1

jump 34.2 33.6 63.8 40.9 6.5 59.8 71.8 10.3 11.2 11.4

twirl 46.1 27.8 65.5 31.1 36.6 45.3 34.7 46.2 41.0 41.8

dog 85.6 71.2 89.1 89.5 33.1 70.8 80.9 90.4 91.6 93.8

dogA 7.1 39.3 72.9 54.6 11.0 28.0 65.2 68.9 65.1 65.9

drtC 55.9 58.9 67.1 48.3 75.8 66.7 32.4 46.1 65.1 67.6

drtS 62.3 69.9 79.4 80.2 57.5 68.3 47.3 67.2 66.4 67.2

drtT 67.8 76.4 80.6 81.1 63.8 53.3 15.4 85.1 89.7 90.6

eleph 75.6 70.4 73.8 75.0 68.9 82.4 51.8 86.2 85.7 87.7

flamg 38.1 33.5 34.5 44.4 79.4 81.7 53.9 44.5 47.8 50.9

goat 72.8 83.1 83.3 85.0 73.5 55.4 1.0 84.1 84.8 85.4

hike 89.3 84.1 79.0 90.8 60.3 88.9 91.8 82.5 83.4 90.4

hockey 60.2 72.7 73.1 83.8 71.3 46.7 81.0 66.0 70.7 75.2

hjH 35.1 77.6 67.0 82.1 73.4 57.8 83.4 71.1 72.1 74.7

hjL 41.1 79.5 73.6 78.1 68.2 52.6 65.1 70.2 76.5 78.7

ksurf 58.3 55.8 46.5 59.4 41.9 27.2 45.3 47.7 49.0 50.9

kwalk 73.3 52.1 48.9 58.3 59.7 64.9 81.3 52.7 51.3 53.0

libby 50.8 49.5 59.4 68.8 5.0 50.7 63.5 67.7 68.1 72.1

lucia 83.3 84.2 78.9 90.7 41.7 64.4 87.6 79.9 81.0 85.5

malf 70.8 47.5 45.8 74.4 3.3 60.1 61.7 74.6 75.2 77.5

malw 65.8 40.9 41.6 84.9 4.5 8.7 76.1 83.3 84.9 88.2

motob 75.0 77.7 71.6 82.5 46.6 61.7 61.4 83.8 85.2 87.3

motoj 60.8 61.5 65.5 72.7 61.8 60.2 25.1 80.4 77.2 79.2

mbike 47.6 78.5 58.4 30.4 73.8 55.9 71.4 28.7 38.6 40.3

parag 72.6 30.9 28.1 91.3 93.3 72.5 88.0 17.7 5.5 3.5

paral 62.8 57.0 58.1 60.5 51.2 50.6 62.8 58.9 59.4 61.8

park 67.7 84.0 78.2 89.8 29.5 45.8 90.1 79.4 79.5 83.3

rhino 55.2 57.7 71.0 67.5 90.2 77.6 68.2 77.6 86.0 88.2

rolb 12.5 64.2 73.2 83.5 80.1 31.8 81.4 63.3 72.7 75.7

scbla 58.8 45.0 72.1 27.6 57.9 52.2 16.2 36.1 36.4 36.9

scgra 67.0 73.7 72.9 70.2 34.5 32.5 58.7 73.2 75.7 77.6

sobox 57.8 47.5 51.9 74.2 67.2 41.0 63.4 49.7 47.4 48.4

socB 49.0 49.5 46.3 88.8 37.0 84.3 82.9 29.3 28.3 28.2

strol 65.4 58.7 58.7 82.5 67.8 58.0 84.9 63.9 62.8 64.6

surf 87.0 78.4 79.1 92.2 77.0 47.5 77.5 88.8 91.2 93.0

swing 75.5 75.5 76.4 80.7 62.2 43.1 85.1 73.8 74.0 77.6

tennis 62.5 78.2 73.0 82.4 59.0 38.8 87.1 76.9 78.4 83.5

train 73.6 46.9 77.3 64.1 88.7 83.1 72.9 42.5 51.1 50.7

Avg. 61.2 61.6 67.7 70.1 54.3 57.5 64.1 64.7 66.5 68.4
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Table 10 Results on the YouTube-Objects dataset.

Methods aero bird boat car cat cow dog horse mbike train Avg.

DSA (Tang et al. 2013) 17.8 19.8 22.5 38.3 23.6 26.8 23.7 14.0 12.5 40.4 23.9
FCN (Long et al. 2015) 68.3 65.7 55.7 76.6 52.3 50.4 55.6 52.6 35.7 55.9 56.9

DET (Zhang et al. 2015b) 72.4 66.6 43.0 58.9 36.4 58.2 48.7 49.6 41.4 49.3 52.4
CoSeg (Tsai et al. 2016b) 69.3 76.1 57.2 70.4 67.7 59.7 64.2 57.1 44.1 57.9 62.3

SPFTN (Zhang et al. 2017) 81.1 68.8 63.4 73.8 59.7 64.5 63.4 58.2 52.4 45.5 63.1
VOSTRa (Chen et al. 2018b) (VGG) 74.6 65.3 66.9 79.5 64.2 68.3 67.3 61.7 51.5 59.4 65.9

VOSTR (VGG) 79.5 67.6 65.7 77.9 68.2 72.8 73.0 63.4 61.9 60.0 69.0

DeepLab (Chen et al. 2016) 80.6 67.8 66.9 73.3 55.3 61.8 63.9 45.5 54.7 56.4 62.6
FSEG (Jain et al. 2017) 83.4 60.9 72.6 74.5 68.0 69.6 69.1 62.8 61.9 62.8 68.6

VOSTRa (Chen et al. 2018b) (ResNet) 83.5 76.4 70.0 75.3 65.9 69.7 71.6 54.7 63.8 58.7 69.0
VOSTR (ResNet) 85.2 77.3 72.5 77.9 67.5 70.5 74.4 56.1 66.0 61.2 70.9

Table 11 Results on the SegTrack v2 dataset.

Methods FST KEY HVS FSEG VOSTRa VOSTR
(Papazoglou
and Ferrari

2013)

(Lee et al.
2011)

(Grundmann
et al. 2010)

(Jain et al.
2017)

(Chen et al.
2018b)

(Ours)

bird of paradise 81.8 92.2 86.8 49.8 49.2 50.7
birdfall 17.5 49.0 57.4 6.9 8.4 7.6

bmx 67.0 63.0 35.9 59.5 61.5 62.7
cheetah 28.0 28.1 21.6 71.2 72.0 73.8

drift 60.5 46.9 41.2 82.2 88.5 91.8
frog 54.1 0.0 67.1 54.9 59.5 61.5
girl 54.9 87.7 31.9 81.1 83.8 86.6

hummingbird 52.0 60.2 19.5 61.5 65.3 67.8
monkey 65.0 79.0 61.9 86.4 86.0 89.3

monkeydog 61.7 39.6 43.6 39.1 37.5 38.4
parachute 76.3 96.3 69.1 24.9 28.1 29.1
penguin 18.3 9.3 74.5 66.2 59.4 60.6
soldier 39.8 66.6 66.5 83.7 84.6 87.6
worm 72.8 84.4 34.7 29.1 29.6 31.0

Avg. 53.6 57.3 50.8 56.9 58.1 59.9

In Table 10, we compare our method with the state-

of-the-art algorithms that use the class-level weak su-

pervision. With the VGG-16 architecture, the proposed

framework performs well in 6 out of 10 categories and

achieves the best IoU on average. Compared to the

baseline FCN model (Long et al. 2015) used in our

algorithm, there is a performance gain of 9% in our

VOSTRa method. With the response refinement, i.e.,

VOSTR, we further improve the baseline FCN model

by 12.1%. In addition, while existing methods rely on

training the segment classifier (Tang et al. 2013), inte-

grating object proposals with detectors (Zhang et al.

2015b), co-segmentation via modeling relationships be-

tween videos (Tsai et al. 2016b), or self-paced fine-

tuning (Zhang et al. 2017), the proposed method uti-

lizes a self-learning scheme to achieve better segmen-

tation results. With the ResNet-101 architecture, we

compare our method with DeepLab (Chen et al. 2016)

and FSEG (Jain et al. 2017). We show that the pro-

posed method improves the performance in 6 out of 10

categories and achieves the best averaged IoU.

5.5 SegTrack v2 Dataset

In Table 11, we provide experiments on the SegTrack v2

dataset (Li et al. 2013) that contains numerous unseen

objects. We use the ResNet-101 architecture and the

training data from PASCAL VOC, which is the same

setting as the appearance stream in FSEG (Jain et al.

2017). We show that the proposed method performs

better than FSEG (Jain et al. 2017), other unsupervised

algorithms (Papazoglou and Ferrari 2013; Lee et al.

2011) and HVS (Grundmann et al. 2010) that includes

human annotations in the procedure. Compared to our

conference version, VOSTRa, we further improve the

performance by integrating the fully-connected CRFs

to our network.

6 Concluding Remarks

In this paper, we propose a self-learning framework to

segment objects in unlabeled videos. By utilizing exist-
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Input CVOS MSG FST

FCN VOSTRa VOSTRa (no sup.) VOSTR

Input CVOS MSG FST

FCN VOSTRa VOSTRa (no sup.) VOSTR

Fig. 5 Sample results on the DAVIS dataset with categories shared in the PASCAL VOC dataset. Comparing with the
approaches CVOS (Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou and Ferrari 2013), FCN (Long et al.
2015), and VOSTRa (Chen et al. 2018b), our approach VOSTR produces more complete object segments with details.

Input Ground Truth Ours

Fig. 6 Sample failure cases. Although our results differ from the ground truths, the segmented areas belong to the same
semantic category.

ing annotations in images, we design a model to adapt

seen object categories from source images to the tar-

get video. The entire process is decomposed into three

sub-problems: 1) a fully-connected CRF model to refine

responses from the CNN output, 2) a segment mining

module to select object-like proposals, and 3) a CNN

model with a transferable layer that adapts feature rep-

resentations for target videos. To optimize the proposed

formulation, we adopt an iterative scheme to obtain fi-

nal solutions. Extensive experiments and ablation study

show the effectiveness of our algorithm against other

state-of-the-art methods on numerous datasets.
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